Shortcuts With Chained Probabilities

February 17th, 2021
math
Let's say you're considering an activity with a risk of death of one in a million. If you do it twice, is your risk two in a million?

Technically, it's just under:

1 - (1 - 1/1,000,000)^2 = ~2/1,000,001
This is quite close! Approximating 1 - (1-p)^2 as p*2 was only off by 0.00005%.

On the other hand, say you roll a die twice looking for a 1:

1 - (1 - 1/6)^2 = ~31%
The approximation would have given:
1/6 * 2 = ~33%
Which is off by 8%. And if we flip a coin looking for a tails:
1/2 * 2 = 100%
Which is clearly wrong since you could get heads twice in a row.

It seems like this shortcut is better for small probabilities; why?

If something has probability p, then the chance of it happening at least once in two independent tries is:

1 - (1-p)^2
 = 1 - (1 - 2p + p^2)
 = 1 - 1 + 2p - p^2
 = 2p - p^2
If p is very small, then p^2 is negligible, and 2p is only a very slight overestimate. As it gets larger, however, skipping it becomes more of a problem.

This is the calculation that people do when adding micromorts: you can't die from the same thing multiple times, but your chance of death stays low enough that the inaccuracy of naively combining these probabilities is much smaller than the margin of error on our estimates.

Referenced in: Peekskill Lyme Incidence

Comment via: facebook, lesswrong

Recent posts on blogs I like:

In Defense of Mystery's Hat

only the most up-to-date discourse takes here on Thing of Things

via Thing of Things December 16, 2024

Developing the middle ground on polarized topics

Avoiding false dichotomies The post Developing the middle ground on polarized topics appeared first on Otherwise.

via Otherwise November 25, 2024

How to eat vegan on Icon of the Seas

Royal Caribbean has a new giant cruise ship, Icon of the Seas, which has a large selection of food options.

via Home November 21, 2024

more     (via openring)