Fermat Numbers

October 3rd, 2013
math
I noticed while working on something else that 255 is 15*17, and 65535 is 255*257. In other words, it sounds like:
    2^(2^n)-1 * 2^(2^n)+1 = 2^(2^(n+1)) - 1
Testing some numbers, it looks like this works:
n 2^(2^n)-1 2^(2^n)+1 2^(2*(n+1)) - 1
0 1 3 3
1 3 5 15
2 15 17 255
3 255 257 65535
4 65535 65537 4294967295
And in fact we can prove that it holds for all n:
    2^(2^n)-1 * 2^(2^n)+1
       = 2^(2^n)*2^(2^n) + 2^(2^n) - 2^(2^n) - 1
       = 2^(2^n)*2^(2^n) - 1
       = 2^(2^n + 2^n) - 1
       = 2^(2*2^n) - 1
       = 2^(2^(n+1)) - 1
If 255 is 15*17 and 15 is 3*5, however, then as long as the numbers 3, 5, 17, 257, etc. are prime we can build up prime factorizations. So 255 would factor into 3*5*17 and 65535 would factor into 3*5*17*257. This suggests that if you have a number in the form 2^(2^n)-1 then its prime factorization is the product of 2^(2^i)+1 from i=0 to i=n-1:
n 2^(2^n)-1 prime factorization
1 3 3
2 15 3, 5
3 255 3, 5, 17
4 65535 3, 5, 17, 257
5 4294967295 3, 5, 17, 257, 65537
Neat!

But then I thought to try one more, and was very surprised:

n 2^(2^n)-1 prime factorization
6 18446744073709551615 3, 5, 17, 257, 641, 65537, 6700417
Why did our nice pattern break? It looks like 2^(2^5)+1 (or 4294967297) is 641*6700417. So not all numbers in the form 2^(2^n)+1 are prime, only the first five. The sequence is the Fermat numbers, integer sequence A000215. Such are the dangers of extrapolation.

Comment via: google plus, facebook

Recent posts on blogs I like:

Where I Donated In 2024

All Grants Fund, Rethink, EA Funds Animal Welfare Fund

via Thing of Things January 17, 2025

2024-25 New Year review

This is an annual post reviewing the last year and setting intentions for next year. I look over different life areas (work, health, parenting, effectiveness, travel, etc) and analyze my life tracking data. Overall this was a pretty good year. Highlights …

via Victoria Krakovna January 15, 2025

The ugly sides of two approaches to charity

What's neglected by "magnificent" philanthropy, and by Singerian global poverty focus The post The ugly sides of two approaches to charity appeared first on Otherwise.

via Otherwise January 13, 2025

more     (via openring)