Fermat Numbers

October 3rd, 2013
math
I noticed while working on something else that 255 is 15*17, and 65535 is 255*257. In other words, it sounds like:
    2^(2^n)-1 * 2^(2^n)+1 = 2^(2^(n+1)) - 1
Testing some numbers, it looks like this works:
n 2^(2^n)-1 2^(2^n)+1 2^(2*(n+1)) - 1
0 1 3 3
1 3 5 15
2 15 17 255
3 255 257 65535
4 65535 65537 4294967295
And in fact we can prove that it holds for all n:
    2^(2^n)-1 * 2^(2^n)+1
       = 2^(2^n)*2^(2^n) + 2^(2^n) - 2^(2^n) - 1
       = 2^(2^n)*2^(2^n) - 1
       = 2^(2^n + 2^n) - 1
       = 2^(2*2^n) - 1
       = 2^(2^(n+1)) - 1
If 255 is 15*17 and 15 is 3*5, however, then as long as the numbers 3, 5, 17, 257, etc. are prime we can build up prime factorizations. So 255 would factor into 3*5*17 and 65535 would factor into 3*5*17*257. This suggests that if you have a number in the form 2^(2^n)-1 then its prime factorization is the product of 2^(2^i)+1 from i=0 to i=n-1:
n 2^(2^n)-1 prime factorization
1 3 3
2 15 3, 5
3 255 3, 5, 17
4 65535 3, 5, 17, 257
5 4294967295 3, 5, 17, 257, 65537
Neat!

But then I thought to try one more, and was very surprised:

n 2^(2^n)-1 prime factorization
6 18446744073709551615 3, 5, 17, 257, 641, 65537, 6700417
Why did our nice pattern break? It looks like 2^(2^5)+1 (or 4294967297) is 641*6700417. So not all numbers in the form 2^(2^n)+1 are prime, only the first five. The sequence is the Fermat numbers, integer sequence A000215. Such are the dangers of extrapolation.

Comment via: google plus, facebook, substack

Recent posts on blogs I like:

Inkhaven Blog Recommendations

I was recently a contributing writer at the blogging retreat Inkhaven.

via Thing of Things December 12, 2025

How to Make a Christmas Wreath

Yesterday, I made a Christmas wreath. Here's how to make one. First, find an evergreen tree near your house. Clip off a few branches from the tree. Try to have as many leaves or needles on the branches as possible. Next, bring them home. What I usu…

via Anna Wise's Blog Posts December 6, 2025

Against the Teapot Hold in Contra Dancing

The teapot hold is the most dangerous common contra dancing figure, so I’ve been avoiding it. The teapot hold, sometimes called a "courtesy turn hold,” requires one dancer to connect with their hand behind their back. When I realized I could avoid put…

via Emma Azelborn August 25, 2025

more     (via openring)